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Crowdsourcing is an increasingly used model to outsource certain tasks to be carried
out by external experts on the Web. Especially when lacking experience or expertise
with certain task types, crowdsourcing o!ers a convenient way to receive instant sup-
port. In this paper, we introduce an in-house enterprise crowdsourcing model, which
leverages the crowdsourcing concept and transfers it to traditional organizations. Here,
a companyÕs sta! is considered a crowd that Ñ besides its regularly assigned tasks Ñ
can also receive tasks from colleagues from other departments and across hierarchical
structures. The aim is to o!er instant support and utilize free capacities throughout a
large organization more e"ciently. In our work, we describe this concept and supporting
mechanisms in context of an agile software development use case. However, in contrast to
usually crowdsourced microtasks, complex software architectures usually consist of tens
and hundreds of connected modules that can be potentially crowdsourced. These techni-
cal dependencies between modules require active coordination and interactions between
crowd members that process the single artifacts. Hence, technical dependencies of arti-
facts result in social dependencies of collaborating crowd members that create them.
In order to e"ciently discover member compositions based on artifact dependencies,
we introduce an indexing and discovery approach based on subgraph matching. Typi-
cally, assigning tasks to well-rehearsed teams results in more reliable task processing,
faster results, and higher quality of work. We evaluate our approach in terms of system
scalability and overall applicability by mining and analyzing the popular SourceForge
community. We show that our approach of member composition discovery is feasibly
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in terms of scalability and quality of discove ry results. Our Þndings deliver important
input for the design and implementation of supporting information systems for future
large-scale collaboration platforms.

Keywords : SOA-based collaboration; interaction mining; enterprise 2.0; crowdsourcing;
social networks; social composition discovery; subgraph matching.

1. Introduction

The collaboration landscape has changed dramatically over the last years by
enabling users to shape the Web and availability of information. While in the past
collaborations were bounded to intra-organizational collaborations using company-
speciÞc platforms, and also limited to messaging tools such as e-mail, it is nowadays
possible to utilize the knowledge of an immense number of people participating
in collaborations on the Web. The shift toward the Web 2.0 allows people to
write blogs about their activities, share knowledge in forums, write Wiki pages,
and utilize social platforms to stay in touch with other people. Task-based plat-
forms for human computation and crowdsourcing, enable access to the manpower
of thousands of people on demand by creating human-tasks that are processed by
the crowd. Human-tasks include activities such as designing, creating, and test-
ing products, voting for best results, or organizing information. This paradigm is
increasingly utilized by todayÕs companies to enable scalable distributed software
development by outsourcing tasks to external experts when lacking particular in-
house expertise or development time.

A wide variety of software development processes, models, and managing tech-
niques have been proposed in the last decades.1 They emerged from the need for
structuring and managing work in large-scale teams. Though these models have led
to accepted standards for software development approaches, they typically focus on
task and artifact dependencies but widelyneglect social aspects of software devel-
opment. We argue that both technical and social dependencies are of paramount
importance, especially for todayÕs agile paradigms.Technical dependencies are
mainly induced by artifact dependencies, e.g. software modules, being created and
developed. Various methods exist to identify these dependencies, such ascall-
graphs that show links of components during run-time. Once relations between
artifacts, e.g. software components and modules of a planned system, have been
identiÞed, we use the concept of ßexible, collaborative activities to describe work
to be performed, i.e. artifacts to be created in order to build the designed sys-
tem. Thus, activity dependencies reßect artifact dependencies. By dividing work
in separate pieces, activities can be distributed across crowd members. However,
as a consequence, initially decomposed work eventually needs to be composed and
integrated again to obtain the Þnal result. This process requires substantial coor-
dination e!ort among crowd members, i.e. artifact creators. Due to this collab-
orative aspect it deems to be more beneÞcial to pick crowd members that are
familiar with each otherÕs working style. Managing thesesocial dependencies
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is typically not covered by todayÕs crowdsourcing platforms that hardly support
interactions between singlemembers. Moreover, crowdmembers typically need to
interact frequently if they work on related artifacts in order to make sure that
their work is aligned and will Þnally Þt together. Even rigidly deÞned interfaces
between separately developed software modules usually cannot avoid this inher-
ent need for communication. As described by ConwayÕs Law2 decades ago,because
software modules interact, this creates a similar need of interaction among software
developers.3

1.1. The principle of collaborative enterprise crowdsourcing

In this paper, we discuss the foundational model for a collaborative enterprise
crowdsourcing environment. Essentially, this model takes the usual concept of
crowdsourcing on the Web and applies it to an enterprise collaboration context.
The basic properties of this environment are that (i) preselected experts(ii) can
be ßexibly involved in ongoing work by outsourcing them generally encapsulated
tasks, however (iii) still giving them the means to coordinate their work (interac-
tion tool support). Especially the last point (active coordination and collaboration
between crowd members) is a strong requirement to deal with complex tasks within
enterprises compared to crowdsourcing microtasks on the Web.

The notable point here is that crowdsourcing is driven by company sta! who are
all hired experts and who collaborate with each other in context of the crowdsourced
tasks. However, it is not the intention to replace existing working collaboration
models but to establish this collaborative crowdsourcing model in parallel to tradi-
tional models in order to better utilize company resources. Open Source Software
(OSS) development shares some of these properties with the envisioned environ-
ment, especially that interactions between team members happen largely online,
participation of people is (often) more ßexible, work fully distributed, and partic-
ipants are only loosely coupled to management. We argue that these properties
are vital to an enterprise environment in which Ñ besides regular work Ñ instant
help and support can be ßexibly gathered, even across organizational boundaries
and hierarchical structures. Of course, in order not to render existing management
structures useless, this model is applied only for a small fraction of the work time,
i.e. indeed for instant help and support and tasks being carried out in free cycles
only.

1.2. Research challenges

The overall research challenge is to design an infrastructure that supports the
described environment. Previous research Ñ which is referred to, however not in
scope of this work Ñ tackles the following challenges:

• Flexible integration of humans in collaborative environments using service-
oriented concepts, such asHuman-Provided Services(HPS)4Ð6
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• Dynamic creation of trust networks using collaboration monitoring techniques,7,8

which allows us to automatically detect social relations between crowd members.

The current paper deals with challenges on top of a ßexible trust-based collab-
oration network, especially dealing with the following concerns:

• Indexing approach for social compositions utilizing emerging trust networks.
• Query and discovery mechanisms using subgraph matching.

1.3. Contributions

In this paper, we describe an approach to manage socio-technical dependencies in
collaborative crowdsourcing environments. Here we introducesocio-computational
crowds based on the concept of humancomputation (e.g. see Ref.9) that was estab-
lished in the context of crowdsourcing. Traditional crowdsourcing environments lack
to a great extent collaborative aspects.Our approach leverages social networks to
support the collaborative processing of crowdsourced tasks. For that purpose we
focus on enabling interactions and establishing social relations in crowdsourcing
environments, as well as on the management of reliable crowd member composi-
tions. In particular, this paper deals with the following contributions:

• Socio-computational crowdsourcing fundamentals.We motivate the need for inter-
actions between crowd members that usually act only isolated on todayÕs plat-
forms. Our approach utilizes service-oriented computing paradigms to build a
loosely coupled crowd community of experts within large-scale enterprises.

• Dependency management approach.We highlight a conceptual model to enable
sophisticated management of social dependencies in aforementioned collaborative
environments. In detail, we discuss the implementation of a feature-based discov-
ery model that enables the e"cient search for crowd member compositions.

• Structure and dynamics of the sourceforge community.We study real community
data and extract common properties that build the basis for further evaluations
of our approach in terms of scalability and applicability. Furthermore, we discuss
the limits of our approach.

The remainder of this paper is organized as follows. Section2 deals with an
enterprise collaboration use case for a private crowd that spans numerous depart-
ments and sub-organizations, and discusses foundational concepts of our proposed
socio-computational crowdapproach. Then, the core contribution Ñ a feature-based
discovery model to identify common crowdmember compositions Ñ is formulated
in Sec.3. We study a real data set, show evaluation results and discuss major key
Þndings in Sec.4. Section 5 outlines the state of the art in collaborative software
research and crowdsourcing applications, and discusses related work applied in our
approach, including service-oriented computing, social networks and trust. Finally,
the paper is concluded in Sec.6.
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2. Basic Building Blocks of Enterprise Crowdsourcing

We start with a motivating scenario that introduces basic concepts. Furthermore,
we discuss foundational building blocks, that enable seamless human participation
in service-oriented architectures (SOA) and account for social implications.

2.1. Agile software development processes

Let us consider a software development project that is executed in an agile man-
ner.10 Such projects do not follow a top-down approach where all requirements
are gathered upfront. In agile software engineering, typically all engineering cycles
are performed iteratively. Each iteration consist of (i) requirements analysis, (ii)
design, (iii) implementation, (iv) integration, and (v) testing. Many of todayÕs soft-
ware companies have adopted this methodology since it allows to consider emerging
customer requirements. Forexample, a customer may request new features during
the development of a software product. These new requirements are then evaluated
in a new development iteration.

Here we consider a large scale software development project comprising vari-
ous team members including project managers, requirements engineers, software
architects, developers, and testers. We assume that the overall project is structured
roughly in three essential phases.

(i) The initial requirements are gathered, basic technologies are evaluated and
crucial design decision are made by a small core team. The core team usually
consists of senior people (e.g. chief architect, senior developers) that deÞne the
most essential features of the software. For example, suppose the team needs
to design and implement an extensible framework that o!ers an API, tools,
libraries, etc.

(ii) The next step is the implementation of the core features and the API, which
is done by the senior developers. At this stage, the team is still kept small
and typically geographically collocated because people needto collaborate and
discuss extensively. This phase may already be performed according to the agile
process where all before mentioned phases are part of an iteration. Depending
on the size, resources, and duration of theproject, an iteration may take several
weeks. Also, we assume that certain automation in the development process
already takes place such as automatic builds, generation of test reports, check
of test coverage, etc.

(iii) In the third phase of the project we assume a transition of the centralized team
to a distributed team. At this point, the core features of the framework have
already been deÞned, documented, and implemented. Team members located
in di!erent departments or company sites have the ability to use and extend
the core framework. This can be accomplished by designing and implementing
components using the frameworkÕs API. Again, certain steps of the process
are automated such as executing batch scripts, copying Þles, deployment of
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software components, or testing of individual components. However, we assume
that various features are implemented and tested by distributed team members
where certain steps require tight collaboration between members. For example,
the tester may report a problem to the developers who in turn need to discuss
changes in the source code.

In the following, we discuss a use case scenario with the focus on socio-
computational crowds embedded in distributed collaborations.

2.2. Use case

Basic Setting. A motivating scenario, including involved actors and artifacts, is
depicted in Fig. 1. Here, in Fig. 1(a), people in geographically distributed depart-
ments of a large-scale enterprise collaboratively participate in a software engineer-
ing project. In particular, the basic steps and responsibilities are modeled in a
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(c) Social dependencies. (d) Collaborative crowdsourcing.

Fig. 1. Motivating scenario: (a) geographically distributed departments execute a cross-
organizational software development process; (b) a rough package view and detailed artifact par-
titions capture technical dependencies; (c) technical relations enable the discovery of matching
social compositions and creation of crowdsourcing activities; (d) interactions during collabora-
tions approve and update registered social networks.
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process that spans numerous organizational units. Using todayÕs modern Web 2.0
approaches and service-oriented architectures11 people have all tools at hand to
ßexibly collaborate on the Web. In our scenario, employees of a multi-national
organization are connected through a social trust network (reßected by the dotted
lines between people).

Single departments take over the responsibility for particular tasks of the
global process. We assume that this company applies an agile software develop-
ment approach, where artifacts are designed, implemented, tested and subsequently
reÞned in short iterative cycles.10 After creating a rough overview, e.g. a UML pack-
age view of the software framework that is going to be developed, each module [e.g.
seeMod-A in Fig. 1(b)] is partitioned in its (atomic) artifacts that can be processed
by individuals. For instance, a software module is decomposed in three classes or
submodulesa1, a2, and a3. Each of these artifacts is going to be created by a soft-
ware developer and accompanied by a software tester who creates test cases and a
Þnal report a4.

After technical dependencies have been thoroughly identiÞed [see Fig.1(b)], arti-
fact structures are mapped onto matching social structures. In other words, tightly
coupled technical artifacts typically require a lot of coordination and integration
e!ort, thus, can be best performed by people that know each otherÕs working style
from previous collaborations (according to ConwayÕs Law2).

Several research challenges arise when assigning responsibilities for creating
technical artifacts to people:

• What if for given technical artifact compositions, there are no matching social
structures, i.e. well-proven team compositions, in the responsible department?

• What if the responsible department has no free capacities while other depart-
ments still have?

• What if there are only matching social structures across the borders of numerous
organizational units?

Enterprise Crowdsourcing. Today, large-scale enterprises are facing the chal-
lenge of e!ective management and exploitation of the employeesÕ knowledge and
resources. Usually, expertise in numerous Þelds is available but often this knowledge
is neither discovered nor captured somewhere. Since decades, researchers invent
models and approaches to overcome that issue.12 Enterprise crowdsourcing13 fol-
lows a di!erent path. Here, employees are encouraged to actively participate in
a private crowd environment, where they o!er their skills and expertise to other
departments of the company. On the one side, rare expertise can be discovered and,
on the other side, free capacities in one department can be used to tackle peak loads
in other departments by outsourcing especially noncritical activities . Thus,
enterprise crowdsourcing deems to be an elegant new paradigm to harness peopleÕs
capabilities in a ßexible and far more e!ective manner compared to rather static
traditional cross-department collaborations. Service-orientation is the ideal means
to realize such private crowds (i.e. not open to the public), because members can
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be dynamically discovered, are loosely coupled and thus composed at run-time, and
ßexibly assigned to activities.

In our use case, a majority of the employees participate in the describedsocio-
computational crowd environment as shown in Fig.1(c). In contrast to the widely
used notion of crowdsourcing, we do not use this environment to outsource tasks
to single individuals only. We rather outsource compositions of problems, e.g. the
creation of technical artifacts having interdependencies, to compositions of crowd
members. Therefore, one major challenge is to identify reliable social compositions,
i.e. groups of crowd members that have proven their reliable and successful collabo-
ration behavior before. Once identiÞed [as highlighted in Fig.1(c)], a collaboration
activity is created and artifacts a1 to a4 (or templates respectively), as well as crowd
membersdi , dj , dk , and ti assigned.

Finally, these members create, modify, and extend the required (or given) arti-
facts. This activity requires an extensive amount of interactions [Fig.1(d)] to coor-
dinate work, align artifacts, and ensure a smooth integration of software modules
later on. Today, a wide range of service-oriented communication, coordination, and
collaboration tools are available for crowd members. Furthermore, since interactions
are performed through these tools, theycan be observed and even analyzed. Thus,
valuable information about real collaboration behavior and spirit can be obtained
and used to approve and update the social trust network between crowd members.
This network is the basis for an e!ective future discovery of reliable crowd member
compositions.

2.3. Socially-enhanced SOA

Numerous concepts support the realization of socio-computational crowd
communities as described in the use case.We especially focus on Service-oriented
Architectures (SOA), since SOA is a natural Þt here. It provides exactly the right
methodology of being able to ßexibly discover resources and bind them to a cer-
tain task. However, here we do not aim at discovering services, but human experts
who are described by their proÞles and social connections they have. Previous work
on Human-Provided-Services (HPS)4 strongly supports this idea. SOA provides a
convenient way to support reliable interactions between collaboration partners who
remain still loosely coupled, and discovery/binding can be performed using software
tools (as evaluated in detail in this paper).

2.3.1. Flexible service-oriented collaboration

An activity model 14 attempts to structure loosely coupled collaborations in service-
oriented systems. Examples of collaborativeactivities at various levels of granularity
are Òsending emailsÓ, Òreviewing a paperÓ, Òorganizing a workshopÓ, and Òmanag-
ing a multi-national research projectÓ. A single activity provides basic collaborative
data. It describes the work to be done andlists the involved people. This data is
often su"cient in static collaborative settings where all members are aware of the
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overall working environment. In dynamic and distributed collaborative environ-
ments, one has to explicitly model the embedding of a single activity in the overall
collaboration context. The context contains the structure of activities, dependencies
between activities, the temporal ßow of activities, and history of activity changes.
This provides the core structure of collaborative work. In addition, the collabora-
tion context describes the involvement of members, their roles, required and applied
skills, work artifacts, and resources.

Web services play a fundamental role in supporting ßexible, cross-enterprise
collaboration scenarios. We discuss human interactions in SOA as introduced in our
previous work (see HPS approach4). HPS enhances the traditional ÒSOA-triangleÓ
approach by enabling people to provide services using the very same technology
as implementations of software-based services (SBS) use. By following the SOA
paradigm, three essential steps are performed (see Fig.2):

(i) Publish. Users have the ability to create HPSs and publish the services on the
Web using a registry. Publishing a service is as simple as posting a blog entry
on the Web. It is the association of the userÕs proÞle with an activity tem-
plate described as a service (WSDL). Interfaces provide the needed metadata
support for the discovery of suitable HPSs.

(ii) Search. The service requester performs a keyword-based search (reßecting
expertise areas) to Þnd HPSs. Ranking is performed to Þnd the most rele-
vant HPS based on, for example, the expertise of the user providing the ser-
vice. Expertise is determined automatically by the HPS framework through
context-sensitive interaction mining techniques.5

(iii) Interact. The framework supports automatic user interface generation using
XML-Forms technology.a Thus, personalized interaction interfaces can be gen-
erated and rendered for di!erent devices. The HPS framework can be used for
interactions between humans and also for interactions between SBS and HPSs.

Service
ProviderRequester

(1) publish(2) search

(3) interact

Registry

SOA-based
Crowd Environment

Fig. 2. Enhancing SOA with human capabilities.

aXML Forms: http://www.w3.org/MarkUp/Forms/
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2.3.2. Emergence of social trust networks

In contrast to a widely used security perspective on trust, we deÞnesocial trust
relying on the interpretation of previous collaboration behavior,8,15 the similar-
ity of dynamically changing interests,8,16 and the maturity of social structures.
Especially in collaborative environments where users are exposed to higher risks
as compared to common social network scenarios17 and business is at stake, con-
sidering social trust is essential to e!ectively guide interactions.18 Here, we deÞne
trust as follows8,15,19: Trust reßects the expectation one actor has about anotherÕs
future behavior to perform given activities dependably, securely, and reliably based
on experiences collected from previous interactions.

Interactions and Monitoring. As motivated in the introduced use case,
people interact to perform their tasks. Work is modeled as activities, that describe
the type and goal of work, temporal constraints, and used resources. As interactions
take place in the context of activities, they can be categorized and weighted. SOAP
is the standard message format to support interactions between distributed software
services. Also human interactions can be supported in a service-oriented manner
using technologies such as SOAP (see HPS4). This technology including extensions
such as addressing and correlation mechanisms is state-of-the-art in service-oriented
environments and well supported by a wide variety of software frameworks. This
fact enables the adoption of various monitoring and logging tools to observe inter-
actions in service-oriented systems.

Link Metrics. Interaction logs are used to infer metrics that describe the relations
of single actors. Various metrics can be calculated by analyzing interaction logs such
as behavior in terms of availability and reciprocity. Relation metrics describe the
links between actors by accounting for (i) recent interaction behavior, (ii) proÞle
similarities (e.g. interest or skill similarities), (iii) social and/or hierarchical struc-
tures (e.g. role models). However, we argue that social trust relations largely depend
on personal interactions. We model a community of actors with their social rela-
tions as a directed graph, where the nodes denote network members, and edges
reßect (social) relations between them. Since interaction behavior is usually not
symmetric, actor relations are represented bydirected links.

Social Trust. Our approach considers the diversity of trust by enabling the ßexi-
ble aggregation of various interaction metrics (e.g.success rateand responsiveness)
that are determined by observing ongoing collaborations. Finally, available rela-
tion metrics are weighted, interpreted, and composed by a rule engine (the detailed
mechanisms are described in Ref.8). The result, e.g. a normalized value in a pre-
deÞned interval or even a linguistic representation such aslow, medium, or high ,
describes social trust between the actors reßecting maturity of link structures, com-
patibility of actorsÕ working styles, and potential success of future collaborations.
Notice, it is essential for our social network management approach that interactions
are captured by the system. Otherwise, if not manually declared, social relations
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cannot be managed and are thus not considered in subsequent operations that
account for social relation properties.

3. Feature-based Discovery Model

The basic aim of our approach is to discover reliable actors for given activity tem-
plates created from artifact structures. Typically, in a collaborative environment,
activities are performed by compositions of actors. Such compositions, e.g. teams,
consist of actors with potentially di!erent roles having social dependencies. For
instance an activity might demand for three software developers specifying and
implementing software modules, and a software tester who assesses the created
artifacts. The fundamental challenge is to Þnd one (or even more) compositions of
actors who can perform this activity. Therefore, this group should have the following
properties: (i) the capabilities of humans match the required roles, and (ii) social
relations follow artifact relations to enable reliable communication and coordination
between dependent actors.

3.1. Feature-based search

From a scientiÞc point of view, this problem is described by theconcept of induced
subgraph isomorphism.20 In order to measure the substructure similarity between
a target graph (here: distinct parts of a social network) and a query graph (here:
a template describing required actor composition properties), di!erent models 21Ð23

have been proposed; in particular (i) physical property-based, (ii) feature-based, and
(iii) structure-based. In this section, we describe a feature-based approach since it
allows to introduce some degree of fuzziness in the discovery process and is not
as complex to compute as structure-based models; and thus, Þt better to large-
scale networks. In short, commonly searched elementary features of subgraphs (to
be more exact: social compositionsb) are extracted, for instance, the number of
software developers in a team, the degree of cross-links between them, or their Þeld
of experience and expertise. Whether a subgraph in the social network matches a
query graph is determined by the number of matching features. Given that similarity
deÞnition, each frequently active team (i.e. social composition represented by a
highly cross-linked subgraph in a social network) is represented by a feature vector,
where its single components represent the frequency of common predeÞned features.
The distance between the query graph and a potential match in the social network
is measured by the distance between corresponding feature vectors.

Figure 3 depicts an illustrative example. In Fig. 3(a) technical dependencies
between three concrete software modulesa1 − a3 and a test casea4 are identiÞed.

b Notice, we use the term subgraph if we refer to any arbitrary segment of a graph in mathematical
deÞnitions or algorithms. However, we use (social) composition if we refer to a concrete set of
people in context of the crowd sourcing scenario. Thus, every concrete social composition is also
a subgraph in the mathematical sense, but not every arbitrary subgraph is a social composition
that emerged from collaborations in joint activities.
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Fig. 3. Feature-based search approach: (a) from artifact dependencies (b) a social graph query
is inferred and (c) matching social compositions are discovered.

These artifacts and their dependencies aremapped to a social structure consisting of
software developers and a tester in Fig. 3(b). Using this generic subgraph template,
appropriate instances are discovered in the large-scale social network as highlighted
in Fig. 3(c). Notice, in this example, software modules are decomposed in segments
so that each of them can be processed by exactly one crowd member.

3.2. Approach outline

The feature-based composition model is applied in context of other concepts to
keep track of the dynamics in ßexible socio-computational crowd environments.
The whole approach depicted in Fig.4 is described as follows:

(i) Social network deÞnition: Single crowd members register their personal pro-
Þles, consisting of interests, expertiseand usual roles; but also their relations to
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Fig. 4. Approach to feature-based discovery: (1) network deÞnition, (2) network annotation, (3)
feature index management, and (4) query handling.
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well-known collaboration partners (e.g. FOAF (Friend-of-a-friend)24 fragments
including knows-relations25). Through semantically reasoning over FOAF snip-
pets a large-scale network model is created and periodically updated.

(ii) Online monitoring : Since members communicate over Web services, all SOAP
interactions can be logged and analyzed. Metrics, such as interaction frequency
and density, describe the strength of predeÞned social relations between col-
laborating members. This information is utilized to conÞrm registered proÞles;
for instance, to discover deÞned but not approved relations.

(iii) Index management: Periodically analyzing member interactions and performed
activities enables the identiÞcation of regularly used collaboration patterns (i.e.
frequently applied compositions of actors) with commonly requested features.

(iv) Query handling: Whenever a query is issued, features of the query graph are
extracted (e.g. number of roles, degree of cross-linkage) and an approximate
query is created based on features only.

3.3. Detailed formulation

We proceed with the deÞnition of an analytical model that supports the discovery
of social compositions considering artifact dependencies.

3.3.1. Social network deÞnition

Crowd members deÞne their individual FOAF proÞles where each one represents
a single graph fragmentGi = ( Vi , Ei ) of the social network. In particular crowd
members deÞne which other members theyknow, i.e. collaborate with. For instance,
membersd7, d8, d9, and t4 deÞne structures as shown in Fig.5. Of course, they only
know their direct neighbors, but by reasoning over these RDFc structures, the whole
graph can be constructed [being a part of the network depicted in Fig. 3(c)]. We
deÞne the whole social networkG to be composed of single fragments as given
in Eq. 1. Notice, manually declared relations are the basis for determining which
interactions need to be monitored and analyzed to conÞrm social structures and
enrich relations with expressive interaction behavior metrics.

G = ( V , E) =

!
"

! G i

Vi ,
"

!G i

Ei

#

. (1)

d7

t4

d8 d9d7

t4

d8

t4

d8

d10

d9 d9d7 d8

t4 d10d6

(a) d7Õs view (b)d8Õs view (c)d9Õs view (d)t4Õs view

Fig. 5. Aggregating individual FOAF proÞles allows the construction of large-scale social net-
works.

cResource Description Framework: http://www.w3.org/RDF/
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3.3.2. Interaction mining and social trust inference

Since we apply SOAP interceptors and access layers for Web service calls, we are
able to capture directed interactionsI that carry some payload p, such as support
requests and work delegations, between pairs of crowd members (u, v) in context of
an activity a (from a set of activities A). These interactions are realized as standard
SOAP calls as explained in detail in our previous work.8

I = {(u, v, a, p) | u, v ∈ V , a ∈ A}. (2)

This enables us to annotate FOAF knows-relations with evidence-based inter-
action metrics mi (u, v). Common metrics are, for instance, request reciprocity,
availability, interaction intensity, frequency and uniformity. 26 These metrics that
characterize the behavior of people can be interpreted in terms of trustworthiness
and dependability.8,15 We exemplarily deÞne the following ones, which are also used
in the evaluation section:

Reciprocity (recpr). A typical social behavior metric is reciprocity 15 that here
reßects the ratio between obtained and provided support in a community. Let
IREQ (u, v) be the set of uÕs sent support requests tov, and IRES (u, v) the set
of uÕs provided responses tovÕs requests. Then we deÞne reciprocity in [−1, 1] as in
Eq. 3; hence, 0 reßects a balanced relation of mutual give and take.

recpr(u, v) =
|IRES (u, v)| − |IREQ (u, v)|
|IRES (u, v)| + |IREQ (u, v)| . (3)

Availability (avail) . This metric describes uÕs availability forvÕs requests, i.e. the
amount of answered requests. The result of Eq. (4) is a value in [0, 1].

avail(u, v) = 1 − |IREQ (v, u)| − |IRES (u, v)|
|IREQ (v, u)| . (4)

Responsiveness(resp). This metric [see e.g. Eq. (5)] describes the response behav-
ior of a crowd member. In particular in todayÕs highly dynamic businesses fast
responses on support requests are a key success factor. Here, we calculate the aver-
age of response times as a measure for someoneÕs commitment. For that purpose,
the average time spant between single interactionsõ, i.e. requests and corresponding
responses, is determined.

resp(u, v) =

$
I RES

t(õREQ (u, v)) − t(õRES (u, v))

|IRES (u, v)| . (5)

Social trust (! ). Finally, these metrics are interpreted and aggregated to reßect
the strength of FOAF relations by one score. For that purpose either an arith-
metical approach that simply weights normalized metrics, or a rule-based approach
that truly interprets metric values (i.e. the trustworthiness of interaction behavior)
according to a given rule-base is applied.8 This operation is represented by⊗ in
Eq. (6).

! (u, v) = 〈(recpr(u, v), avail(u, v), resp(u, v)) , ⊗〉. (6)
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3.3.3. Index management

The basic aim is to identify frequently occurring actor compositions, e.g. teams,
collaborating in context of activities. For that purpose an indexing algorithm uses
two data sources: (i) interaction logs I from the monitoring facilities to discover
strong social connections and dependencies, and (ii)activity structures A to identify
member compositions working in the same context. Since crowd members interact in
context of activities, the indexing algorithm traverses a list of Þnished activities and
analyzes interactions between assigned members. Hence, social network structures
are identiÞed relying on evidence through interaction mining, rather than manually
deÞned connections from FOAF proÞles only.

We harness an index structure, referred to as the feature-graph matrixM,22

to facilitate the feature-based registration of actor compositions. Each row of the
matrix M corresponds to a registered subgraphGi of the social network, while
each column corresponds to a feature f j being indexed. Each entry xij records
the number of the embeddings (values respectively) of a speciÞc featuref j in the
registered subgraphGi (Table 1).

Social Composition Features. One of the most challenging parts in our approach
is the deÞnition of meaningful and signiÞcant features. For our given software engi-
neering scenario, we deÞned the features given in Table2 to describe signiÞcant
properties of social compositions of crowd members. While the Þrst Þve features
deal with structural properties of the social graph only (i.e. number of nodes, partic-
ular roles, hubs, and links, as well as the average node degree), the last two features
can be interpreted as quality attributes. Here, avg trust is a measure for the link
quality between members, whilematurity is a means to express the stability and

Table 1. Feature-graph matrix index.

fA fB fC . . . f j

G1 x1A x1B x1C . . . x1j
G2 x2A x2B x2C . . . x2j
G3 x3A x3B x3C . . . x3j
...

...
...

...
. . .

...
Gi x iA x iB x iC . . . x ij

Table 2. Social composition features for software development scenarios.

Feature name Feature description

num nodes Number of crowd members in the composition
num { role} Number of { role} , e.g. developers, testers
num links Number of links in the composition
avg nodedeg Average degree of nodes (distribution of links)
num hubs Number of nodes linked to all other nodes
avg trust Average trust score between members
maturity Number of activities that approved the composition
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reliability of a connection. In particular, maturity captures the number of activi-
ties which have been performed by a certainsocial composition and is therefore an
important attribute to express the probability of future collaboration success.

Notice, varying features are useful for di!erent use cases. For instance, if a
requester (i.e. someone issuing a query) deÞnes clear requirements on roles s/he can
omit num nodes. However, especially in software development roles are sometimes
fuzzy (e.g. di!erences in activities of designers, implementers, and testers). In such
cases, a requester could also simply look for a social composition that is su"cient
in terms of manpower (num nodes) and omit num {role} instead.

Index Updates. The index requires frequent updates to reßect the real social
networks of highly dynamic collaboration environments. Thus, whenever an activity
is Þnished, involved members and their relations are analyzed and either a new
subgraphGi added to the index, or an existing one (consisting of the same members)
is updated in terms of changed features. Indexing algorithms are discussed in the
next section in greater detail.

3.3.4. Approximate discovery and query relaxation

In order to discover appropriate crowd members to process a set of technical arti-
facts, queries on the social network, in detail on the feature graph index, are
issued. Typically a composition of technical artifacts GA , as shown in Fig. 3(a),
is given; for instance a class diagram, entity-relationship diagram or higher-level
dependency model. This input is mapped to a social dependency graph [Fig. 3(b)]
using a scenario-speciÞc bijective mapping between user roles and artifact types,
i.e. di!erent types of technical artifacts require distinct roles of crowd members. For
instance, a software module requires a software developer, or a test report demands
for a tester. Furthermore, the type (implements, uses, calls, etc.) and degree of cou-
pling between technical artifacts determine the required strength of social relations
between assigned crowd members; for instance, the development of tightly cou-
pled modules results in higher coordination e!ort and thus requires distinct social
trust ! .

Algorithm 3.1 shows the details. First, for each technical artifact x ∈ VA of a
particular type ( x.T ype) a node template for a crowd member with a corresponding
role (u.Involvement.Role ) is created (Line 3). This template for a crowd member,
which is essentially a node in the query graph, is to be ÒÞlledÓ later with a certain
crowd member. Then, for all existing dependencies fromx ∈ VA to any y ∈ VA ,
a social trust value ! between corresponding actorsu, v ∈ VQ of the social query
graph GQ is set (Line 7).

Once, the query graph has been constructed, the features that characterize the
required social composition need to be extracted. Using the metrics of Table2 and
the query graph given in Fig. 3(b), one would get the featuresnum nodes = 4,
num d = 3, num t = 1, num links = 5, avg nodedeg = 2 .5, num hubs = 1
(here, avg trust and maturity are omitted). A query that is basically an ordered
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Algorithm 3.1 Build query graph from techn. dependencies.
1: Input: artifact dependencies GA = (VA , EA )
2: Output: social dependency query graph GQ = (VQ , EQ )
3: for each x ∈ VA do
4: u ← createNodeTemplate(x.Type)
5: addNode(VQ , u)
6: end for
7: for each x ∈ VA do
8: u ← getCorrespondingNodeTemplate(VQ ,x)
9: for each y ∈ VA do

10: v ← getCorrespondingNodeTemplate(VQ ,y)
11: τ (u, v)← mapFromTechnicalDependencyType(x,y)
12: end for
13: end for
14: return GQ

set of these criteria, is issued by comparing these query graph properties with the
feature index. This is an approximate querying mechanism; i.e. because features
of the query graph match features of the index graphs does not mean that query
and result graphs are structurally identical. However, the more features match the
higher is the probability that resulting graphs match the query.

In case no matching subgraph is found, two mechanisms can be applied:

• Query relaxation22: is a mechanism that subsequently removes less important
features from the query until matching results are found; for instance,num nodes
must hold in order to have a workforce of appropriate size, but the distribution
among rolesnum {roles} is relaxed.

• Subgraph fusion: if no single subgraph satisÞes the query, a result can be con-
structed out of two subgraphs, e.g. construct a larger workforce composed of two
smaller social compositions. In that case, overlapping nodes between these two
subgraphs ensure proper interlinks in the Þnal result. A heuristic is required to
realize this feature, which is out of scope of this paper.

Notice, our approach focuses only on the discovery of appropriate and approved
social compositions for a given problem. However, further negotiation with actors
are required prior to starting a collaboration, e.g. accounting for their free capaci-
ties, personal constraints, and rewarding.

3.4. Activity-based indexing algorithm

The further presented indexing algorithm (Algorithm 3.2) basically operates on
a list of Þnished activities. First, for each activity the list of involved members
is extracted from the activity structur e (Line 4). Since members are sometimes
o"cially involved in activities but actually inactive (since other actors take over
their responsibilities), we remove all crowd members whose amount of performed
actions is less than" inv (Line 6). Then, mutual knows-relations from FOAF pro-
Þles determine potential social dependencies in context of the Þnished activity.
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Algorithm 3.2 Basic periodic index update.
1: Input: list of activities A, index matrix M
2: /* extract one social graph per finished activity */
3: for each a ∈ A do
4: Gi ← createGraph(a.InvolvedMembers)
5: /* remove officially involved but actually inactive members */
6: for each u ∈ Vi do
7: if |a.actions(u)| / |a.actions(any)|< ϑinv then
8: removeNode(Gi ,u)
9: end if

10: end for
11: /*annotate strength of social relations */
12: for each u ∈ Vi do
13: for each v ∈ Vi do
14: if ∃ knows(u, v) ∧ ∃ knows(v, u) then
15: τ (u, v, ) = updateMetrics(u, v, Ei )
16: if τ (u, v, ) > ϑ! then
17: Ei = Ei ∪ {e(u, v)}
18: end if
19: end if
20: end for
21: end for
22: /* further annotations to Gi */
23: addOriginActivity(Gi , a.id)
24: setUpdateTimestamp(Gi )
25: /* social graph registration in index M */
26: F ← extractFeatures(Gi , featurelist)
27: /*. . . apply alternative template-based filtering here (see next) */
28: if Gi ∈M then
29: updateIndexEntry(Gi ,F ,M)
30: else
31: createIndexEntry(Gi ,F ,M)
32: end if
33: end for

However, if these social relations actually have been relevant, i.e. interactions along
these relations have been performed, needs to be veriÞed by metrics gathered from
interaction mining. Thus, if social trust ! (u, v) is above a certain threshold " ! ,
this relation is considered important for the success of this collaboration. Other-
wise, i.e. no interactions occurred betweenu and v or trust is low, the relation
is not considered for the social compositionGi (Line 15). Afterwards, beginning
with Line 22, Gi is ÒtaggedÓ with two further properties: (i) its origin(s) (activ-
ity ids), and (ii) a timestamp to capture the up-to-dateness of this composition.
Finally values of predeÞned features (featurelist ) are extracted that describe this
graph (see Table 2) and either a new entry in the index matrix created or an
existing entry updated (Line 25). An entry already exists, if it contains exactly
the same members (identiÞed by theiruri s) and connections between them. This
means that there are no two subgraphs with identical nodes and edges in the
index.
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Template Mechanism. If features of recognized social compositions largely di!er
(e.g. in terms of roles and trust values) than numerous unique compositions are
registered. In order to avoid that phenomenon (i.e. to be able to provide various
alternatives to a given search query), subgraphs can be registered according to
predeÞned commonsocial graph templates(Algorithm 3.3). That means the features
of a social compositionGi are tested against predeÞned templates, i.e. compositions
that frequently occur or whose features have been recognized as highly requested
(e.g. from query log analysis27) while further properties are neglected.

Algorithm 3.3 shows the basic principle. First, all featuresF of a social compo-
sition Gi are extracted. Then, these features are tested against a list of predeÞned
templesT that characterize the desired features (Line 6). The algorithm counts the
number of matching features of a compositionGi and template t ∈ T . If, Þnally,
most features of a templatet are covered byGi , this subgraph is added to the index
(Line 13). Otherwise, the recognized composition is not of interest and skipped.

Pruning. Of course, social compositions of crowd members that do not frequently
perform activities need to be removed from the index. For that purpose, we apply
a self-pruning index mechanism28 (Algorithm 3.4) that recognizes whether the last
update of an index entry due to a Þnished activity is older than a predeÞned thresh-
old (" age). In that case, the outdated Gi is removed (Line 2). However,mature and
long-term settled compositions that were involved in an extraordinary amount of
activities ( " act ) may remain in the index (Line 6).

4. Evaluation and Discussion

Since we have not applied our approach and implementation in large-scale envi-
ronments but like to evaluate its feasibility and applicability (e.g. of the indexing
algorithm), we need to utilize either synthetic data or data sets from other domains.
In order to set up a realistic setting, we study the properties of free and open

Algorithm 3.3 Template-based Þltering for index updates.
1: Input: list of graph templates T , social composition Gi
2: F ← extractFeatures(Gi , featurelist)
3: /* check each registered template */
4: for each t ∈ T do
5: featurematch ← 0
6: for each f ∈ F do
7: /* single feature match */
8: if match(t, f) then
9: featurematch ← featurematch + 1

10: end if
11: end for
12: /* Gi matches (nearly) all template feature */
13: if featurematch/numFeatures(t) ≈ 1 then
14: /* add/update Gi in M here ... */
15: end if
16: end for
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Algorithm 3.4 Self-pruning index mechanism.
1: Input: index matrix M
2: /* inspect each registered subgraph */
3: for each Gi ∈M do
4: /* if composition not used recently (aged out) */
5: if currentTime - getUpdateTimestamp(Gi ) > ϑage then
6: /* and if no long-term settled composition */
7: if getNumOriginActivities(Gi ) < ϑact then
8: deleteIndexEntry(Gi ,M)
9: end if

10: end if
11: end for

source software development communities,29,30 such as theSourceForge Research
Data Archive (SRDA) 31 to create a synthetic collaboration network graph consist-
ing of users with certain roles having interrelations and being involved in sets of
activities. Although our social composition management and discovery approach
was designed to be applied in private crowds, i.e. within enterprise boundaries, we
argue that the SRDA is still a valuable basis for evaluation (considering the scale
and fundamental nature of captured collaborations), especially with some modiÞ-
cations and corrections as further elaborated in this section.

4.1. SRDA data set properties

The Sourceforged platform provides a free management and development infrastruc-
ture for open source projects, including CVS repositories, mailing lists, discussion
forums, and task management and tracking Ñ just to name a few. The SRDA con-
sists of collected data from the SourceForge community. We analyze SRDA tablese

from January 2011 regarding (i)project tasks and structures: project assigned to
and project task , (ii) discussion forums:forum and forum group list , (iii) arti-
facts: artifact , artifact messageand artifact category . Furthermore, we cor-
relate user actions and user roles using prior work from Ref.32. Here, user actions
also include CVS operations. Analyzing and harnessing real data, combined with
synthetic data under feasible assumptions allows us to create a realistic scenario of
large-scale crowd-sourced software development.

4.1.1. Activity structures

Analyzing SRDA enables us to create a realistic setting in terms of activity sizes
(i.e. number of involved membersf ), number of activities where one user is involved

d http://sourceforge.net
eonline Wiki: http://srda.cse.nd.edu/mediawiki
f Notice, we removed all anonymous users (with id=100) from the data set, because there is no way
to distinguish between di!erent anonymous users and this hinders us to create a realistic social
network later.
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Fig. 6. Community structures on task level: (a) user e!ort in terms of involved tasks; (b) task
size in terms of involved users.

at the same time, as well as the distribution of activities among projects. We create
one activity in our system for each single task in the data set. In order to show
the feasibility of this approach, we study the properties of tasks and show some
characteristics in Fig. 6.

In detail, Fig. 6(a) visualizes the typical number of tasks (task set size) where a
single user is involved. From 11,915 users, 4,369 are involved in only one task, 2,098
in two tasks, and 1,297 in three tasks. There are around 45 users who are involved
in more than 50 tasks. The rest is distributed as shown in the Þgure. Figure6(b)
shows a di!erent perspective, in particular the number of tasks having a particu-
lar user set size (i.e. team) assigned. Obviously, most tasks (50,758 of 54,500) are
performed by single users only, while there is no task where more than 11 users are
involved. Due to that reason, we further analyze team structures on project levels
by aggregating tasks.

Figure 7(a) shows the distribution of tasks on project level. From 14,285 ana-
lyzed projects, there are 5,518 that consist of only one task, 2,901 with two
tasks, and 1,669 with three tasks. On the other side, the largest project con-
sists of 527 tasks. Figure7(b) demonstrates that the number of newly created
task assignments over an observed timeframe of 18 months remains nearly con-
stant at around 59,000 and 94,000 (including assignments to anonymous users)
respectively.

We conclude that for around 12,000 users, we will create around 4,000 activity
entries (corresponding to tasks having more than one user in SRDA) consisting of
two to 11 users, and assigned to 500 projects (having more than one task with more
than one involved user) with a distribution as discussed before.
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Fig. 7. Community structures on project level: (a) project size in terms of number of tasks; (b)
temporal evolution of created task assignments in a 18 months timeframe.

4.1.2. Role mining

Implicit user roles describe a userÕs typical collaboration behavior and focus based
on performed actions. Roles are an inherent concept of our composition discovery
approach. However, since user roles arenot explicitly set in SourceForge (neither
statically in user proÞles nor dynamically at project setup), we need mechanisms
to identify user roles by analyzing the SRDA data set. For that purpose we study
experiments Þrst performed by Ref.32 (and described in greater detail in Ref.33).
In short, users (of the largest and most active projects) are clustered based on
actions they perform on the SourceForge platform. Here, we only study a small
subset of available actions, in particular, (i) create a new forum message, (ii) cre-
ate a follow up forum message, (iii) modify a project (adding/removing members,
changing permissions etc.), (iv) check out source code from CVS repository, (v)
add source code to CVS repository, (vi) remove code, (vii) modify code, and (viii)
update code. There are much more actions available,32 including tracking bugs,
releasing Þles and submitting patches, feature requests, artifacts, todos, etc. A clus-
tering approach is used to identify similarities of action distributions among users.
Finally, around 40 member custers are identiÞed (depending on the thresholds in
the clustering algorithm32), which describe around seven di!erent roles. The two
largest clusters, containing software users Ñ who check out software and discuss
bugs and features Ñ and project managers, contain around 75% of all users. How-
ever, there are clearly other roles, such as pure software developers, task managers
and bug reporters.33 Figure 8 visualizes action distributions (i.e. the number of
performed actions by all users in the corresponding cluster) for the three major
roles software user, project administrator, and software developer.
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Fig. 8. Action distribution in clusters of various user roles.

We conclude that in our crowdsourcing environment around 41% of members
will be software users (i.e. general experts that drive the further development by
testing prototpyes and discussing issuesin forums), 34% project administrators,
and 17% pure developers. The rest (8%) does not Þt into these roles.

4.1.3. Interaction data

Interactions on SourceForge may take place over various channels. However, not all
of them can be easily captured or are included in the SRDA. For instance, while
subscriptions to mailing lists are part of the data set, actually sent e-mails are not.
Therefore, we utilize two di!erent interaction channels: (i) forum messages, and (ii)
artifact messages.

Threaded Forum. The forum allows to discuss missing features, bugs or further
development in a hierarchical manner. That means to every message a so-called
follow-up message can be posted. The data set consists of 31,67,605 captured mes-
sages (and 51,91,629 if including posts by anonymous users respectively). We count
4,94,302 distinct forum posters. Figure9 shows some basic characteristic of the
forum. In particular, Fig. 9(a) visualizes the distribution of the set size of follow-
up messages on the same hierarchical layer; in other words, the number of posts
attracted by one particular message. Figure9(b) shows thread sizes by aggregating
all messages on all levels beginning with the top message in one message tree. From
9,85,838 messages that have at least one follow-up (i.e. not being an unanswered
post), 11,857 have equal or more than 10 follow-ups, from that set 915 messages
have more than 25 follow-ups. Regarding the thread size, we investigated thread
structures with at least 10 messages in order to capture serious discussion e!ort.
There are 40,830 threads that fulÞll this criterion. From this set 3,887 threads con-
sist of more than 25 messages, 509 have more than 50 messages, and 125 more than
75. The largest thread consists of 414 messages (without anonymous posts). We
conclude that in SourceForge discussions are typically focused, i.e. a message does
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times of users (up to 10,000 s).

not have dozens of follow-ups, however, deep thread structures emerge, e.g. due to
controversy on certain issues.

Figure 10 provides information about general user behavior. In detail, Fig.10(a)
shows the number of posts per user. For better readability Ñ the number of posts
per user highly varies from 1 to 90,071 Ñ users are aggregated on they-axis. That
means, the Þgure shows on they-axis the number of users who posted more than the
given amount of messages on thex-axis. There are 43,302 users who posted more
than 10 messages, 6,001 with more than 50 messages, and 2,679 users with more
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than 100 messages. Thus, serious analysis is only possible with a small fraction of
the whole user base. We furthermore investigated response times in Internet forums.
Since we do not know which message is a question and which one a comment, we
simply capture the di!erences of timestamps between each message and its follow-
up (i! there is one). Figure 10(b) reßects the responsiveness of forum posters by
categorizing message pairs according to their posting times. Response times are
given in seconds. Note the logarithmic scale.

Artifact Messages. A second source of interaction data are artifact messages.
SourceForge users can ÒattachÓ messages and comments to artifacts of various
types. Overall, there are 10,76,517 artifacts where at least one message is assigned
in the studied time span. In sum, 1,64,429 distinct users submitted 23,05,702 mes-
sages (29,91,274 if including artifact messages by anonymous users). Figure11(a)
shows the accumulated number of artifacts for various message set sizes. As shown
in this cumulative diagram, there are around 15,654 artifacts with equal to or more
than 10 messages attached (thus, really collaboratively processed artifacts), and 96
artifacts with equal to or more than 50 messages. More than 50% of artifacts have
only one message assigned.

Figure 11(b) displays a cumulative submitter perspective; i.e. the number of
message submitters on they-axis that submitted more messages than the message
set size given on thex-axis. For instance, from the full set of 1,64,429 distinct
submitters, 22,214 submitted equal or more than 10 artifact messages, 3,306 users
more than 100 messages, and 225 users more than 1,000 messages. Approximately
43% of all users submitted only a single artifact message. Since artifact messages are
sparsely distributed over a large set of artifacts, we assume an artifact message as
a kind of point-to-multi-point communication, where each single message addresses
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all users who submitted messages to the same artifact. This approach, instead of
a point-to-point model, enables us to infer still meaningful metrics that quantify
usersÕ relations in our proposed socio-computational crowdsourcing model.

4.2. Collaborative crowd environment setup

After extensively analyzing a real Web-based large-scale software development envi-
ronment, we create a synthetic crowdsourcing environment that reßects attributes
from SRDA in terms of (i) structural properties such as number and sizes of activi-
ties, and (ii) dynamic interactions such as exchanged messages and performed task
assignments. Furthermore, we assign the roles of software developers, software users
(aka testers) and project administrators to the crowd members using exactly the
same distribution as given in the SRDA data set. The following section deals with
metric calculation as deÞned in Sec.3. In particular, we demonstrate the calculation
of reciprocity , availability and responsivenessbased on SRDA data.

Reciprocity. The SourceForge data set o!ers two valuable properties to calculate
reciprocity, i.e. the amount of obtained support from the community compared
to the amount of provided support. First, tasks are created by one person and
may be assigned to another one. In total, there are 11,915 users involved in task
processing; 10,613 of them assign tasks to others than themselves. In sum, 94,308
task assignments have been captured. By removing assignments from anonymous
users and also self-assignments, only 15,207 tasks remain to be analyzed. Finally,
there are 5,941 unique user pairs, i.e. a mapping from one assigner to another
assignee. From that amount, 3151 distinct users assign tasks to 5335 other users.

A second source of information is the Internet forum. Our assumption is that
a top post, i.e. the Þrst post in a thread, is usually a question or support request
(except announcements which however are mostly unreplied). All further replies are
attempts to address this request. Thus, the poster of the Þrst message obtains some
help from the community, while repliers provide some support. Using the forum
mining algorithm from Ref. 34,g we calculate each userÕs contribution score and
subsequently reciprocity. If a user obtains more support from the community, i.e.
posts many top messages but replies less or assigns many tasks but processes only a
few, than this value is negative. Figure 12(a) shows the distribution of reciprocity for
top-150 contributing and top-150 beneÞting users. Notice, project administrators
have negative reciprocity by nature (e.g. it is part of their role to assign tasks to
others). Thus, we calculate reciprocity values only between members with the same
roles, in particular, software users, project administrators, and software developers.

g Notice, since there are no frequently discussing distinct user pairs, we calculate reciprocity not for
personal relations between two particular users, but for users with respect to the whole community.
This further reduces the computational complexity from around O(n2) Ñ one potential link
between every pair of nodes Ñ to O(n). However, in our proposed socio-computational crowd
environment, interactions would not be performed in a public manner but addressed directly to
receivers, thus, metrics would be calculated for personalized links.



February 16, 2013 20:21 WSPC/S0218-8430 111-IJCIS 1250005

Discovering and Managing Social Compositions 323

0 50 100 150
−0.8

−0.4

0

0.4

0.8

user instance

re
ci

pr
oc

ity
 le

ve
l

contributing users
benefiting users

20 40 60 80 100
0

20

40

60

80

100

users [%]

av
ai

la
bi

lit
y 

[%
]

(a) Reciprocity distribution (b) Availability distribution

Fig. 12. Metric distribution: (a) reciprocity , (b) availability .

Overall, there are few users who beneÞt very much, while on the other side the
majority of users contribute a little. Accumulating all reciprocity values of all users
results in ≈ 0.

Availability. Users submit artifacts of various types to the SourceForge plat-
form. However, they can be assigned to and Þnally closed by other users.
Thus, an artifacts ownership and relation to users is described by a triple
〈submitted by, assignedto, closed by〉. In the studied time span, there are 4,22,443
artifacts that have not been submitted by, assigned to, or closed by anonymous users
(in sum, there are 22,92,054 artifacts on the platform). From that set, 3,01,095 arti-
facts are submitted by and assigned to two di!erent users. We assume that artifacts
who are submitted and closed by the same user (≈ 11.9%) are processed success-
fully (at least if the status is set to closed), and thus the assigned user was available
to process a given task. In case the submitter and closing user are two di!erent per-
sons (≈ 70.3%), the assigned user was available for collaboration if s/he assigned at
least one message to the corresponding artifact. For the rest, we consider artifacts
with state closed or pending as success, others as failed.h Figure 12(b) depicts the
minimum availability in percent for a certain amount of users (in percent from the
whole population). Note, we only considered a small user base of 250 users, since for
larger populations availability could not be calculated seriously. There is simply not
enough data to prove availability with smaller amounts of interactions. Basically,
in this Þgure there are two buckles, one where availability drops from around 95%
to around 75% and another one where the same happens from around 65% to 40%.
This e!ect seems to be caused by highly varying numbers of captured interactions

h Of course, we cannot prove that these assumptions are correct in all cases, however, given the
massive amount of data we argue that the trend of handling data this way is feasible.
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(i.e. artifact assignments). We conclude that for the availability metric, a larger
pool of personal interaction is required to calculate stable and reliable values.

Responsiveness. In order to calculate this metric for SourceForge community
members, we utilize once more the Internet forum. In contrast to reciprocity cal-
culation, here we can partly use posts from anonymous users too. In particular, we
consider how fast distinct users reply to anonymously posted messages. We proceed
as follows: First, all Þnal answers (i.e. unreplied follow-up posts) from anonymous
users are removed from the data set. Then, we determine uniquei user pairs, count
how often they replied to each otherÕs posts, and study those, who had at least 10
interactions. Doing so, there remain 10,189 user pairs of which 1,780 had at least 25
interaction, 491 at least 50 interactions, and 131 equal or more than 100 interactions.
The number of posts and the average of response times do virtually not correlate
(Pearson correlation coe"cient of −0.024). Figure 13(a) shows average response
time values and corresponding number of exchanged messages. Figure 13(b) deals
in more detail with the responsiveness values of the fastest replying users. Notice,
here we record user pairs. Thus, there are 11 user pairs who have an average response
time below 1,000 s (≈ 17 min), 471 with response times below 10,000 s (≈ 2.8 h),
and 4,307 below 1,00,000s (slightly above oneday). We do not use other data
sources for responsiveness calculation, such as task assignments, since processing
times (and thus response times) highly vary according to task complexity.

Social Trust. Various approaches exist to infer social trust values from captured
behavior metrics. Here we use normalization and weighted average, i.e. metric values

0 2000 4000 6000 8000 10000
10

0

10
2

10
4

10
6

10
8

user pair instance

 #
in

te
ra

ct
io

ns
, r

es
po

ns
iv

en
es

s

avg. response time
#messages

10
2

10
4

10
6

10
0

10
1

10
2

10
3

10
4

responsiveness [sec]

ac
cu

m
ul

at
ed

 #
us

er
 p

ai
rs

(a) Responsiveness vs. #messages (b) Responsiveness distribution

Fig. 13. Metric distribution: (a) responsiveness vs. number of messages, (b) average response
time .

i Posts from anonymous users are assigned to one virtual user. This method does not distort the
measurement since we calculate average values only (and do not sum up contributions such as for
reciprocity).
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are normalized, e.g. to Þt the interval [0,1] and are than combined with prede-
Þned weights (all three metrics (recpr, avail, resp) use1

3 weight/impact). Alterna-
tively, more sophisticated approaches, including rule-based aggregation and fuzzy
set theory8 can be applied. The Þnal outcome is a scale-free social trust network, as
visualized in Fig. 14. The graphÕs properties regarding degree distribution and con-
nectivity match attributes of common colla borative communities as investigated by
Ref. 35. In particular, degree distributions of such networks follow power laws with
degree exponents between 2.1 and 2.5; here, for our network created from Source-
Forge data we calculated an exponent of 2.10, thus matching overall expectations.

4.3. Experiments and results

The basic aims of these experiments are (i) to demonstrate thefeasibility of our
dependency management approach, and (ii) to measure thescalability and perfor-
mance of the prototype implementation.

4.3.1. Scale of social network management

The Þrst step in our evaluation approach is tocreate a synthetic network that has
realistic properties (in terms of size, node degree, member roles, activity involve-
ments etc.) extracted from real community data as discussed before. For that pur-
pose we use the following model:

(i) Create 12,000 user instances (nodes).
(ii) Assign roles : software users (41%), project admins (34%), software develop-

ers (17%), undeÞned (8%).
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Fig. 14. Created social trust network (reduced view for 1,000 nodes).
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(iii) Create list of activities with 4,000 entries.
(iv) Create links between users according to SourceForge data set, i.e. distribu-

tion of link strength between users of same roles.
(v) Partition users in groups (subgraphs) consisting of 2 to 11 nodes;≈ 1

3 having
2-3 users,≈ 1

3 having 4-6 users,≈ 1
3 having > 7 users.

(vi) Assign groups to activities.
(vii) Structure activities in projects .
(viii) Create FOAF proÞles that are processed by our system.

Properties of the resulting graph are summarized in Table3. Metric deÞnitions
follow common standards as further explained by the utilized software toolNet-
work Analyzer.j This overview shows the complexityk of typical networks that our
algorithms will have to cope with.

In order to utilize the created graphl for the evaluation of our prototype imple-
mentation for managing and discovering member compositions, we create a FOAF
proÞlem for every single user, containing his/her name (lastname ), role (Group),
relations to collaboration partners (knows) extended with a trust value, and activ-
ity involvement ( currentProject and pastProject respectively). This process is
supported by the Jena Semantic Web Framework.n

4.3.2. Basic graph construction and indexing

We discuss performance aspects of our proposed indexing approach as deÞned by
Algorithm 3.2. Notice, this algorithm operated on top of the previously created syn-
thetic collaboration network. The performance of interaction log analysis, metric

Table 3. Complexity of created network.

Social network metric Value

Number of nodes 12,000
Number of edges 23,976
Connected components 1
Clustering coe"cient 0.001
Network radius 6
Network diameter 9
Network centralization 0.016
Characteristic path length 5.381
Avg. number of neighbors 3.996

j http://med.bioinf.mpi-inf.mpg.de/netanalyzer/
k Notice, the mentioned software tool required 7,969 seconds to calculate the given properties on
a Pentium D with 3.0 GHz.
l Here we use the Java Universal Network/Graph Framework (JUNG) available at http://jung.
sourceforge.net .
m The related FOAF concept is highlighted with a typewriter font.
n http://jena.sourceforge.net
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calculations and trust inference is not in scope of this work but has been exten-
sively studied in Ref. 8. Here we traverse a list of 4,000 activities and index social
compositions by determining the predeÞned featureso of Table 2.

We run the indexing algorithm two times: (i) Activity-centric indexing : applies
the algorithm as deÞned where for each Þnished activity the features of the corre-
sponding social composition are extracted. (ii)Node-centric indexing: refers to the
creation of one virtual activity per user and adding all nodeÕs neighbors in advance.
In fact, here the surrounding social network of each node (and from its individual
perspective), potentially emerged from numerous activity involvements, is indexed,
rather than social compositions from a third personÕs view.

For activity-centric indexing the result are 4,000 social compositions (one per
activity), which are grouped according to equality of features. Figure15(a) depicts
the size of clusters and their distribution. Here, the 25 most common compositions
are clustered and labeled (A-Y), while further 268 of 4,000 compositions do not Þt
into these schemes (lable Z). Table4 shows the top-5 occurring social compositions
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Fig. 15. Composition detection frequency for di!erent indexing approaches.

Table 4. Most frequent compositions (in sum # 44.5% of all compositions).

Type num { role} num links avg nodedeg avg trust Count

A 2 su 1 1 [0.25,0.5[ 446
B 1 su, 1 pa 1 1 [0.25,0.5[ 398
C 2 su 1 1 [0.5,0.75[ 347
D 2 su, 1 pa 2 1.5 [0.25,0.5[ 302
E 1 su, 1 sd, 1 pa 2 1.5 [0.5,0.75[ 289

oNotice, we skip the calculation of the maturity feature since social compositions are rarely reap-
plied in SourceForge and thus in our synthetic model. However, we argue that when using our
system from the beginning, this feature will have major impact, especially when querying for
well-trained and frequently applied social compositions.
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and some relevant features, i.e. num{role},p num links, avg nodedeg, avgtrust. q

Notice, that smaller compositions occur of course more often.
For node-centric indexing results are depicted in Fig.15(b). In this case, a

higher amount of activities (i.e. 12,000 matching to the number of nodes) is ana-
lyzed. The results show compositions (AÕ-ZÕ) from each userÕs point of view (as
given, for instance, in Fig. 5). In other words, the results are the decompositions
as reßected by the single FOAF proÞles ofnetwork members. Since social struc-
tures from a nodeÕs perspective include only direct relations and hence are not as
complexr as in the previous case (again see e.g. Fig.5), only 256 (of 12,000) social
compositions do not Þt into one of the created 25 clusters. This situation would
signiÞcantly change, if we did not only consider a nodeÕs direct relations, but also
neighbors of neighbors (a kind of recommendation mechanism.)

We discuss theperformance of these approaches from an abstract perspective,
in terms of number of invocations of core services (infrastructure discussed later),
and number of database accesses, because real run-time performance varies depend-
ing on numerous impacts, such as network latency, processor speed and load, and
memory consumption. Table 5 compares the e!ort of applying the two discussed
indexing mechanisms. In general, activity-centric indexing [see e.g. count(i)] results
in less but larger (partly unique) compositions compared to node-centric indexing
[see e.g. count(ii)] which produces more, but less complex social compositions.

After performing this set of experiments with basic indexing, we motivate the
application of template-based indexing, as discussed earlier in this work, which
allows to:

• group social compositions more e"ciently, e.g. group actually di!erent but in
terms of features quite similar compositions.

• better support the discovery of frequently requested compositions (e.g. matching
to often issued queries)

Table 5. Performance in terms of number of calls and resulting index complex-
ity for (i) activity-centric indexing and (ii) node-centric indexing.

Measurement Count (i) Count (ii)

in
fra

st
ru

ct
ur

e #ActivityServiceAccesses 4 000 12 000
#UserDBAccesses 59 818 47 592

#SocialTrustNetworkAccesses 23 976 23 976
#FOAFProÞleAccesses (public) 12 000 12 000

#RegistryDBAccesses 25 888 51 684

da
ta #CompositionsRegistered 25 888 51 684

#IndexNetworkCoverage (percent) 93.3% 98.3%

p su=software user, sd=software developer, pa=project admin.
q measured in intervals, otherwise compositions could not be grouped.
r Notice, here the average degree of a node is 3.996.
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• cut the long tail of the distribution in Fig. 15 which provides little value to most
users but causes signiÞcant management overhead (e.g. size of index)

• recognize sub-subgraphs, e.g. a social composition which performed a set of activ-
ities could be split into two frequently requested compositions and thus registered
multiple times.

4.3.3. Template-based composition indexing

We pick the most recognized social compositions types A-J (see top-Þve in Table4)
as templates and re-run indexing Algorithm 3.2, but additionally apply Algorithm
3.3. We conÞgure the indexing process to categorize recognized social composi-
tions by comparing the four features num {role}, num links , avg nodedeg, and
avg trust as used in Table4 before. Figure 16 visualizes the results. Given our
data set, we can recognize around 11% of social compositions with only one tem-
plate, around 44.5% with Þve templates, and already 71.4% with 10 templates. We
tested template-based indexing with up to 25 di!erent templates with which we
can categorize 93.3% of all occuring social compositions.

Submatching. Until now, we categorized social compositionsGi (extracted from
activities) which exactly match a given templateÕst features; e.g.num links (Gi ) =
num links (t). Now, we further evaluate so calledsubmatches. Here, we test eachGi

against all available templates in order to recognize if a given composition fulÞlls
at least a templateÕs features; e.g.num links (Gi ) ≥ num links (t). As a result
the more complex a recognized social composition is, the more often it can be
decomposed in simpler submatches and registered multiple times. Figure 17 shows
the resultss for this experiment. In general, 2,825 social compositions (from 4,000
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Fig. 16. Amount of covered activities compared to number of applied templates.

sNotice the logarithmic scale on the y-axis.
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Fig. 17. Number of social compositions that match multiple templates (leading to several regis-
trations).

activities) are registered only once (because those consist only of two nodes and
therefore cannot match further relevant subgraphs); 497 compositions (≈ 12.5%)
are registered twice. Interestingly, the number of social compositions for higher
number of registrations is not decreasingmonotonic. For instance, there are more
social compositions that are registered four times than three times. The reason is
that there are numerous compositions consisting of three nodes (u, v, w), which can
be additionally decomposed in three subgraphs consisting of only two nodes ((u, v),
(u, w), (v, w)). Thus, in sum, a three-node-composition here is registered four times
as long as other features (such asavg trust ) do match either.

Template Complexity. Finally, we investigate the impact of template structures
and complexity on the indexing process. The question is, how does the amount of
social compositions, which is recognized by the indexing process, change for dif-
ferently complex template deÞnitions. For that purpose we set the number of uti-
lized templates to 10 (Þxed) and just vary the number of impacting features. The
whole feature list consists of (in this order): num nodes, num {role}, num links ,
avg nodedeg, num hubs, and avg trust . We begin with testing each social com-
position against each single template by considering all features. Then, we remove
the last feature in the feature list (beginning with avg trust ) and run the indexing
process again. Figure18 visualizes the results for indexing with exact matches and
indexing with submatches. As expected, the more features are tested the lower is
the amount of matching social compositions. Furthermore, submatching leads to at
least partly indexed structures of more complex social compositions as well as to
multiple registrations. Ther efore, even larger social compositions become indexed
to some extent and the number of covered activities (and their corresponding social
compositions respectively) in Fig.18(b) does not increase as sharply as in Fig.18(a).
A careful tradeo! between accuracyof indexed compositionsand amount of covered
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Fig. 18. Amount of covered activities depending on number of compared template features.

activities by applying a Þxed number of templates (here: 10) must be considered.
For instance, when indexing by exact matching thenum nodes feature, 10 tem-
plates are su"cient to cover 100% of activities (matching num nodes = [2 , 11]),
because there are no corresponding social compositions with more than 11 users
[compare Fig. 6(b)]. However, in that case one would only be able to query for
social compositions with an appropriate size but neglecting other features, such as
roles and trust links.

4.3.4. Composition discovery and query relaxation

For the Þnal tests we createa reference index through template-based indexing
with exact matching and using 25 templates which considerall features as deÞned
in Table 2. This index covers 87% of activities and their corresponding social com-
positions respectively. Furthermore, we deÞne three test queriesQ1, Q2 , and Q3.
Query Q1 is designed to deliver a large amount of results, i.e. querying only for a
pair of software users (su) with an average trust relation. QueryQ2 looks up three
users, with one hub node to which two other nodes are connected. QueryQ3 deÞnes
the search for three users of di!erent roles which are well interconnected. All three
query deÞnitions use featuresnum nodes, num {role}, num links , avg nodedeg,
num hubs, and avg trust . Notice, maturity is neglected here (symbol∗ means any)
which is not su"ciently reßected in our test data set. Table 6 shows the details.

Issuing the queries as given delivers result sets of sizes 446, 102, and 89 (Table7).
If the discovered social compositions are currently not available (e.g. actors are
involved in other activities, index is outdated), a query relaxation mechanism can
be applied in order to Þnd further social compositions that potentially match oneÕs
needs. This mechanism gradually removes features from the query and therefore
extends the result sets. Table7 provides an overview of the results for the given
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Table 6. DeÞnition of test queries Q1, Q2, Q3.

Feature Q1 Q2 Q3

num nodes 2 3 3
num { roles} 2 su 2 su, 1 pa 1 su, 1 sd, 1 pa
num links 1 2 3
avg nodedeg 1 1.5 2
num hubs 2 1 3
avg trust [0.25,0.75] [0.25,0.75] [0.25,0.75]
maturity $ $ $

Table 7. Query relaxation results.

! %Q1& 'Q1( %Q2& 'Q2( %Q3& 'Q3(

1 446 446 102 102 89 89
0.833 446 767 102 222 89 194
0.667 446 890 102 289 194 226
0.5 446 890 212 356 201 289
0.333 987 2825 282 472 222 312
0.167 1237 2825 385 534 250 501

Increase (! = 0 .5) # 100% 107%Ð183% 126%Ð225%

queries. The Þrst column describes the relaxation factor # = # appliedF eatures
# allF eatures (# = 1

means all features are used in the query). Then two columns, a lower bound and
an upper bound, describe the size of the result set. There are two limits because
depending on which feature is removed Þrst, the sizes of result sets vary. For
instance, removingnum nodes from Q1 has virtually no e!ect, since num {roles}
already strictly deÞne that two software users are required. However, removing
avg trust dramatically extends the result set (here: from 446 to 767). The last row
in the table summarizes how many more results are generated when neglecting half
of the query features (# = 0 .5). In general, more complex queries proÞt more from
query relaxation because they become considerably simpler. Again, query relax-
ation introduces fuzziness to the query results and its usefulness heavily depends
on the use case, i.e. how strictly results must match to an issued query.

If a query delivers too many results, one caneither restrict constraints, e.g. deÞne
more search attributes or tighter constraints,t or rank query results according to
one or several metrics. For instance, ranking hundreds of elements in the result set
according to average trust and selecting the top-ranked element is an intuitive use
case to pick a certain social composition from a larger list.

4.3.5. Web services-based implementation

Service Infrastructure. From the technical (and implementation) point of view,
we use a wide variety of state-of-the art Web (service) technologies. Crowd members

t Notice that the query mechanisms cannot only deal with the = operator, but also with < and >
and their combination in order to deÞne intervals.
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(and even their relations) are represented by a large set of individual FOAF pro-
Þles that are initially created manually for (and ideally from) each node in the
social network. Once registered, these proÞles, especiallyknows-relations are then
automatically updated based on captured interaction data as further discussed in
Ref. 26. Using FOAF, we link these nodes to a list of activity identiÞers that reßect
respective community membersÕ involvements in certain activity instances. Activi-
ties are managed in an external Activity Web service that implements the activity
model as discussed earlier in this paper, and is hosted on Axis2. Since reading single
FOAF proÞles for each query for determining graph structures is time-consuming,
we implement a dedicated SocialTrustNetwork Web service that manages an in-
memory graph model (with a MySQL backend database to guarantee persistence)
and whosecache is frequently updated from current FOAF proÞles. Together with
the the single FOAF proÞles, the whole technical infrastructure is hosted on an
Apache Tomcat Web Server. Potential end-users, i.e. people who query for social
compositions, can utilize this infrastructure through Java Portlets that are hosted
on a Liferay Community Server. These portlets support the conÞguration of the
index management (e.g. deÞning templatefeatures), and the deÞnition of queries
(e.g. entering required subgraph feature values of indexed social compositions).

Performance Issues. Our implemented prototype uses a service-oriented backend
with dedicated Web services for (i) periodically processing interaction logs to infer
(and update) collaboration metrics and behavior (see details in Ref.8, (ii) managing
activities and joint task contexts (see details in Ref. 14), and (iii) managing sub-
graphs reßecting well-proven social compositions (i.e. create, read, update, delete
index entries). Web services o!er the great ability to facilitate interoperability and
openness, since interfaces are well documented (as WSDL) and easily usable through
established frameworks that can create stubs on demand and even perform ßexible
invocations. However, Web service calls are time-intensive (predominantly because
of complex XML processing of SOAP messages) and often cause a major bottleneck
in data-intensive applications. Furthermore, processing distributed FOAF proÞles
and creating/updating the social network graph is a time- and resource-intensive
process. Numerous optimization methods can be applied to tackle performance
issues, including caching of FOAF documents, bulk-transfers of proÞles if appli-
cable, and even bypassing Web services, e.g. here granting the indexing service
direct access to back-end databases. Some optimization mechanisms for social net-
work management, including WS caching mechanisms8 and selective updates of
relations,26 have been discussed in our previous work. Here, the technical infras-
tructure itself is not in the focus of the work at hand.

Essentially, we utilize a heavily distribut ed service-based infrastructure which
mitigates negative performance impacts through clustering. The actually critical
issue is the dynamic usage of the system. The higher the number of created com-
positions and activities, and number of interactions per time interval, the higher is
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the e!ort to keep the social network, and thus the index, up-to-date. These per-
formance questions need to be clariÞed in future work that deals with a real world
deployment in larger scales.

5. Background and Related Work

CSCW and Knowledge Management Systems. Numerous deÞnitions of
Computer-Supported Cooperative Work (CSCW) exist.36,37 From quite technology-
centric views, such as38 Ò... addresses how collaborative activities and their coor-
dination can be supported by means of computer systemsÓ, to more people/social
centric views39 Ò...the understanding of the way people work in groups with the
enabling technologies of computer networking, and associated hardware, software,
services and techniquesÓ. One particular aim of this kind of software is the com-
position of e!ective teams. This so called sta"ng concept40 was invented to create
harmonic teams that Þt to certain task requirements based on their knowledge
and expertise reßected in database proÞles. However, these sta"ng systems assume
sophisticated knowledge management approaches12,41 in order to properly represent
member properties in the database. A distinct disadvantage of such systems is that
they mostly rely on manual data input. In our work, we motivate the application
of data mining approaches to update proÞles automatically. Moreover, we do not
apply the sta"ng concept for composing a static core team, but use an approach for
ßexibly discover (and integrate) supporting individuals (i.e. crowd members), who
perform certain tasks in comparatively short time intervals. We argue that this
aspect makes our approach di!erent from traditional sta"ng systems, and thus
justiÞes the introduction of a crowdsourcing terminology.

Crowdsourcing. From our understanding Web-based collaboration and crowd-
sourcing are the natural successors of CSCW software. Crowdsourcing applica-
tions13,42,43 are online, distributed problem-solving and production models that
have emerged in recent years. A vast numberof registered individuals o!er solu-
tions to various problems and provide their workforce online. Crowdsourcing o!ers
some distinct beneÞts such as multiple redundant workforces that can be utilized on
demand;44 and collective intelligence used to rate items and vote for best results.45

Many research challenges remain related to the distributed and open nature of
crowdsourcing. In this work, however, we assume aprivate crowd environment that
is established by employees of large-scale enterprises.46 Thus, some assumptions can
be made and typical issues relaxed, such as the motivation of crowd members to
participate in activities and su"cient skills and experience of actors. Since members
of enterprises have been hired by human resource o"ces, there skills and working
performance is known in advance and these are no issues in our proposed use cases.

First attempts towards service-oriented crowdsourcing of inter-connected tech-
nical artifacts have been elaborated in our previous work. In Ref.47, we motivate
the need for collaboration in crowdsourcing applications and introduce Þrst ideas
of required building blocks. In the current paper, we follow up on this approach,
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and elaborate in detail a realistic agile software development use case, an advanced
social composition discovery approach, and a detailed evaluation using real world
data sets. In particular, we formulate the essential research challenges and con-
tribute concrete analytical models and algorithms to solve the problem of matching
technical structures to social structures. These contributions have not been pre-
sented before.

Socio-technical Dependencies in Software Engineering. Developing complex
software systems, requires the involvement of large groups of software designer,
developer and tester, and produces an extensive amount of technical artifacts,
including, code, speciÞcations, manuals, and reports.48 As recognized byConwayÕs
Law,2 social structures reßect technical structures and vice versa. That means, there
are strong similarities between the coupling of team members (social dependen-
cies) and compositions of artifacts they produce (technical dependencies).3,49 For
instance, tighter coupled software modules require stronger coupled teams, since
more technical dependencies demand for thorough coordination and alignment of
work. Especially, when applying modern agile software development techniques with
short incremental cycles the role of interpersonal interactions and social relations
must be revisited. The impact of socio-technical dependencies has been considered
to study new approaches on analyzing the fault-proneness of individual software
components within a system50 or to optimize structures of professional software
development teams by learning from the organic formation of social structures
in open source software development.51 The controversial topic of how research
results from open source software development studies can be transferred to tra-
ditional software development is also part of a popular seminal essay.52 Here, the
author characterizes open software development (the bazaar) as a fundamental
opposition to professional or organizational software development (the cathedral).
Furthermore, Þle repository logs are a valuable source that reßect technical depen-
dencies between software modulesand social dependencies such as co-authorship
of code.53,54 Supporting explicitly software development with these principles has
been studied by Ref.49. In this work, dependencies are visualized to support the
manual discovery of single developers.

Service-oriented Computing (SOC). SOC promises a world of cooperating
services loosely connected, creating dynamic business processes and agile appli-
cations that span organizations and platforms.55 Service-oriented architectures
(SOA) have emerged as the defacto standard to design and implement large-
scale enterprise collaboration systems on the Web. They allow for loose coupling
between single components and enable sophisticated discovery mechanisms based
on functional (e.g. supported features) and nonfunctional (e.g. QoS) properties.
Web service technology56 enables cross-organizational interactions in collaborative
networks.57 Major software vendors have been working on standards addressing the
lack of human interaction support in service-oriented systems. WS-HumanTask58
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and Bpel4People59 were released to address the emergent need for human inter-
actions in business processes. These standards specify languages to model human
interactions, the lifecycle of human tasks,and generic role models. Role-based access
models58 are used to model responsibilities and potential task assignees in pro-
cesses. While Bpel4People-based applications focus on top-down modeling of busi-
ness processes,service-oriented crowdstarget ßexible interactions and compositions
of Human-Provided services.4 This approach is aligned with the vision of the Web
2.0, where people can actively contribute services. In such networks, humans may
participate and provide services in a uniform way by using the HPS framework.4

In our work, we combine SOA conceptsand social principles. We consideropen
service-oriented crowdswherein services can be added at any point in time. Follow-
ing the open world assumption, humans actively shape the availability of services.
The concept of Human-Provided Services (HPS)4 supports ßexible service-oriented
collaborations across multiple organizations and domains. Similarly, emergent col-
lectives as deÞned by Ref. 60 are networks of interlinked valued nodes (services).
Open service-oriented systems arespeciÞcally relevant for future crowdsourcing
applications.42 While existing platforms (e.g. AmazonÕs Mechanical Turku) only
support simple interaction models (tasks are assigned to individuals), social net-
work principles support more advanced techniques such as formation, delegation,
and adaptive coordination.

Trust in Social Networks. Social Trust15,61Ð63 in service-oriented systems has
become a very important research area. SOA-based infrastructures are typically
distributed comprising a large number of available services and huge amounts of
interaction logs. Therefore, trust in SOA has to be managed in an automatic man-
ner.64 Depending on the environment, trust may rely on the outcome of previous
interactions15 and interest similarity. 16,65 Eventually, social trust is an indicator for
the strength and degree of social coupling, which we utilize to discover matching
social structures to given technical artifact compositions. In our approach, met-
rics express social behavior inßuenced by the context in which collaborations take
place.8 For instance, reciprocity 66 is a concept describing that humans tend to estab-
lish a balance between provided support and obtained beneÞt from collaboration
partners. Social trust networks can be represented as computational models using
the FOAF format. 7

Subgraph Matching. The fundamental basis for our social comosition discov-
ery approach relies on theconcept of induced subgraph isomorphism.20 In order to
measure the substructure similarity between a target graph (here: distinct parts of
a social network) and a query graph (here: a template describing required actor
composition properties), di!erent models21Ð23 have been proposed; in particular (i)
physical property-based, (ii) feature-based, and (iii) structure-based. In our work we

u Amazon MTurk: http://www.mturk.com
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describe a feature-based approach since itallows to introduce some degree of fuzzi-
ness in the discovery process and is not as complex to compute as structure-based
models; and thus, Þt better to large-scale networks. Further works deal especially
with multi-billion node graphs, 67 and probabilistic subgraphs for social networks.68

6. Conclusion and Future Work

Our work is motivated by the observation from related studies that there is a direct
mapping between social dependencies and technical dependencies in large-scale soft-
ware projects. We presented an approach that uses this knowledge to enable e"cient
collaborative crowdsourcing of software artifacts (and related activities respectively)
by considering technical artifact dependencies to discover matching social composi-
tions of crowd members. Social links are deÞned by members through their FOAF
proÞles and enriched with data gathered through an automatic interaction mining
process. Using service-oriented architectures enables sophisticated interaction mon-
itoring and thus the calculation of interaction metrics that describe collaboration
behavior. We evaluated and proved our concepts using data from a real community,
i.e. SourceForge. This approach ensures that we design our concepts and proto-
type implementation for scenarios having realistic properties and scale. Our work
has important design implications for future frameworks and platforms supporting
socio-computational crowdsourcing applications. We discussed typical properties of
large-scaleWeb-basedsoftware development use cases and demonstrated the appli-
cation of monitoring and mining techniques, and social composition indexing and
discovery mechanisms.

We argue that our proposed approach of subgraph matching with additional
query relaxation for discovering member compositions is a good tradeo! between
performance and quality. Although the indexation and relaxation approach might
lead to misses of best results for speciÞc queries, the mechanisms can still quickly
provide results even in large networks. This is essential if small update cycles are
required (as typical for high dynamics in collaborative networks) in order to keep
the index up-to-date.

The presented indexing approach is going to be applied and evaluated in real
end-user environments in context of theEU project COIN. Results from this eval-
uation will substantially inßuence further developments and improvements. Con-
ceptually, we currently use the concept of activities to group crowd members and
capture the context of interactions. Hence, primarily social compositions within
activities are recognized. In our future work we plan to consider also collaborations
across activities, in particular in hierarchical activity structures, in order to capture
diverse social compositions in large-scale collaborative settings.

Future research objectives for the short term deal with the evaluation of the
feasibility of our approach in real world applications and numerous run-time aspects.
Although our evaluation on a (static) sourceforge data snapshot reveals that we
are able to capture, manage and discover social compositions, dynamic aspects of
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system usage and time series analysis of SRDA have been out of scope of our
evaluation. In particular, we will st udy the user acceptance and behavior, and
thus, the resulting load on our system. Critical objectives are the evaluation in
ßexible working environments and the application of appropriate mechanisms to
avoid resource deadlocks (i.e. the concurrent claim of social compositions) at run
time, delegation of activities to balance work within the community 69 and to ensure
optimal work distribution.

A further critical aspect, not related to the technical realization itself, is the over-
all feasibility and acceptance in rather traditional working environments. Related
questions, dealing with the acceptance of and trust in proposed compositions by
company managers, need to be evaluated in future work to ensure a wide adoption
of the proposed socio-computational crowds besides common collaboration models.
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